Undersampled MR Image Reconstruction with Data-Driven Tight Frame

نویسندگان

  • Jianbo Liu
  • Shanshan Wang
  • Xi Peng
  • Dong Liang
چکیده

Undersampled magnetic resonance image reconstruction employing sparsity regularization has fascinated many researchers in recent years under the support of compressed sensing theory. Nevertheless, most existing sparsity-regularized reconstruction methods either lack adaptability to capture the structure information or suffer from high computational load. With the aim of further improving image reconstruction accuracy without introducing too much computation, this paper proposes a data-driven tight frame magnetic image reconstruction (DDTF-MRI) method. By taking advantage of the efficiency and effectiveness of data-driven tight frame, DDTF-MRI trains an adaptive tight frame to sparsify the to-be-reconstructed MR image. Furthermore, a two-level Bregman iteration algorithm has been developed to solve the proposed model. The proposed method has been compared to two state-of-the-art methods on four datasets and encouraging performances have been achieved by DDTF-MRI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Layer Tight Frame Sparsifying Model for Compressed Sensing Magnetic Resonance Imaging

Compressed sensing magnetic resonance imaging (CSMRI) employs image sparsity to reconstruct MR images from incoherently undersampled K-space data. Existing CSMRI approaches have exploited analysis transform, synthesis dictionary, and their variants to trigger image sparsity. Nevertheless, the accuracy, efficiency, or acceleration rate of existing CSMRI methods can still be improved due to eithe...

متن کامل

Data-Driven Tight Frame for Multi-Channel Images and Its Application to Joint Color-Depth Image Reconstruction

In image restoration, we usually assume that the underlying image has a good sparse approximation under a certain system. Wavelet tight frame system has been proven to be such an efficient system to sparsely approximate piecewise smooth images. Thus it has been widely used in many practical image restoration problems. However, images from different scenarios are so diverse that no static wavele...

متن کامل

Parameter-Free Reconstruction of Highly Undersampled MR Angiography Images using Gradient Descent with Sparsification

Figure 2: Time curves for representative pixels in the carotid artery (left) and sagittal sinus (center) for the undersampled (dotted) and GraDes reconstruction (solid). The GraDes reconstruction follows the temporal dynamics shown by the undersampled data closely. Additionally, the enhancement of the carotid artery occurs significantly before that of the sagittal sinus in the GraDes reconstruc...

متن کامل

Reference-Driven Compressed Sensing MR Image Reconstruction with Partially Known Support and Group Sparsity Constraints

Applying compressed sensing (CS) to magnetic resonance imaging (MRI) makes it possible to reconstruct a MR image from undersampled data. Traditional CS based MR image reconstruction schemes only use the signals’ sparsity in an appropriate transform domain to reduce sampling rate. This paper proposes a new MR image reconstruction method which utilizes structure features of the image besides spar...

متن کامل

MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods

An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015